

Todosijević, S., Razbornik, I., Bednarek-Kamińska, M. (2025) From funding risk to predictive control: wincode AI system for preventing financial mismanagement in sports In: Dašić, D. (ed) Sporticlopedia SMB2025, Vol 3, No 1, 203-210

DOI: <https://doi.org/10.58984/smbic250101203t>

Corresponding author: sanja1todosijevic@gmail.com

FROM FUNDING RISK TO PREDICTIVE CONTROL: WINCODE AI SYSTEM FOR PREVENTING FINANCIAL MISMANAGEMENT IN SPORTS

Sanja Todosijević³³, Igor Razbornik³⁴, Magdalena Bednarek-Kamińska³⁵

Abstract: Many sports institutions fail not due to a lack of funding, but due to an inability to convert allocated resources into compliant and sustainable projects. This paper investigates whether an AI-supported system can reduce financial mismanagement by replacing static grant writing with predictive structured control. The study presents the WinCode system, an AI-driven platform consisting of four interconnected modules: MILES for logical project and financial modelling, SCORE for iterative evaluator simulation, EXECUTE for real-time task and risk tracking, and ECHO for audit-ready reporting and transparency. Empirical evidence is drawn from pilot workshops conducted with Erasmus+ sport project managers and first-time applicants. The results indicate that the application of predictive logic modelling significantly improves funding success rates, particularly for organisations with limited internal administrative capacity. By reframing project design from a speculative process into a controllable and verifiable system, the WinCode methodology supports scalable, transparent, and financially sound implementation of sports projects.

Keywords: predictive funding; AI-supported grant writing; financial governance; sports projects; WinCode

³³ Supernova – Center for Education, Research and Training, MBA, High School of Tourism, Otona Župančića 4, Beograd, Serbia, E-mail: sanja1todosijevic@gmail.com, ORCID ID 0009-0002-8044-5941

³⁴ Smart Institute, Slovenia, igor.razbornik@gmail.com, ORCID ID:0009-0007-1538-1271

³⁵ Fundacja Instytut Re-Integracji Społecznej, Szybka 20, 95-070 Ciężków, Poland, ORCID: 0009-0001-5969-3839 Email: bednarek.magdalena@wp.pl

Introduction

The European sports funding landscape is undergoing a structural transformation characterised by increasing demands for transparency, accountability, and demonstrable impact. Despite substantial allocations under the Multiannual Financial Framework (MFF) 2021–2027, a persistent implementation gap remains evident across the sports sector. Many organisations, ranging from grassroots clubs to established institutions, struggle to translate awarded funds into compliant, sustainable, and socially impactful projects. This gap is rarely the result of insufficient motivation or expertise in sport, but rather of limited administrative capacity and the absence of structured systems for managing financial and implementation risks.

Empirical evidence and policy guidance indicate that while funding strategies at European level are increasingly impact-oriented, execution at organisational level often fails due to fragmented planning, inconsistent logic, and reactive project management practices. As a result, sports organisations face risks such as underutilisation of funds, implementation delays, or the return of allocated resources. These challenges highlight a structural imbalance between the growing complexity of funding requirements and the practical capabilities of project implementers, particularly within small and medium-sized organisations.

In response to these challenges, recent academic and professional discourse has explored the integration of Artificial Intelligence as a systematic tool for improving governance, quality assurance, and risk management in project-based environments. Rather than serving merely as an automation mechanism, AI is increasingly conceptualised as a cognitive support system capable of reducing administrative burden, enhancing logical consistency, and enabling proactive decision-making throughout the project lifecycle. By supporting organisations in navigating regulatory frameworks and complex evaluation criteria, AI-based systems offer a pathway to mitigate cognitive overload and improve coherence between project design, budgeting, and implementation. Within the context of sports funding, this shift marks a transition from traditional static grant writing towards predictive structured control. Static approaches typically rely on narrative persuasion and retrospective evaluation, offering limited opportunities to identify logical weaknesses prior to submission. Predictive approaches, by contrast, embed evaluation logic, financial traceability, and risk mitigation mechanisms directly into the project design phase. This transformation enables organisations to anticipate implementation challenges, align resources with measurable outcomes, and maintain compliance throughout execution.

This paper positions the WinCode system as a response to the identified implementation gap in sports funding. Grounded in the Logical Framework Matrix and operationalised through a structured 26-step protocol, the system integrates AI-supported

Todosijević, S., Razbornik, I., Bednarek-Kamińska, M. (2025) From funding risk to predictive control: wincode AI system for preventing financial mismanagement in sports In: Dašić, D. (ed) Sporticopedia SMB2025, Vol 3, No 1, 203-210

mentorship, predictive evaluation, execution tracking, and audit-ready reporting. By examining its application through empirical pilot cases, the study contributes to the emerging body of research on AI-enabled governance and offers a practical model for strengthening financial integrity and sustainability in publicly funded sports projects.

Aims

The primary aim of this paper is to examine whether an AI-supported project management system can reduce financial mismanagement and improve the successful implementation of publicly funded sports projects by replacing static grant writing practices with predictive structured control. The study focuses on the WinCode four-pillar architecture, MILES, SCORE, EXECUTE, and ECHO, in addressing common sources of implementation failure, including fragmented planning, delayed risk detection, and insufficient alignment between project objectives, budgets, and expected outcomes. Through empirical evidence derived from pilot implementations, the paper assesses whether predictive logic modelling and iterative evaluator simulation can increase funding success rates and reduce resource loss, particularly among sports organisations with limited internal administrative capacity.

In addition, the study contributes to the broader academic discussion on hybrid intelligence in project governance by analysing how the structured integration of AI-based systems can mitigate cognitive overload among sports managers and improve decision-making quality across the project lifecycle.

Literature Review

The transition from traditional grant writing to predictive governance in publicly funded sports projects reflects a broader evolution across project management, cognitive science, and digital transformation research. The expansion of European funding instruments under the Multiannual Financial Framework (MFF) 2021–2027 has intensified requirements related to compliance, impact measurement, and financial accountability, exposing structural limitations in the capacity of sports organisations to manage increasingly complex project lifecycles.

The Crisis of Implementation and the Implementation Gap

Research in sport management consistently highlights limited organisational capacity as a major barrier to effective project implementation. Dowling et al. (2018) demonstrate that smaller sports organisations face persistent challenges in internationalisation due to constrained administrative resources and limited access to professional

project development expertise. Recent systematic evidence further confirms that sustainable growth in sport management depends on a structured combination of knowledge, competencies, and professional skills, particularly in governance, planning, and strategic implementation (Guidotti et al., 2023). Without these competencies, organisations are more likely to engage in fragmented and reactive project development, increasing the risk of financial inefficiency and long-term instability.

From Linear Planning to Impact-Based Governance

Traditional project management has long been dominated by the “iron triangle” of cost, time, and scope (Pollack et al., 2018). While this model remains relevant for operational control, it is insufficient for publicly funded sports projects, where societal impact and behavioural change are increasingly prioritised. Contemporary governance models therefore emphasise outcome - and impact-based planning, requiring explicit causal links between resources, activities, and long-term change.

Hills, Walker, and Dixon (2019) show that programmes lacking a documented Theory of Change often fail to produce measurable effects, even when adequately funded. Logic-based frameworks, by contrast, embed evaluation criteria directly into project design, reducing uncertainty during implementation, and providing a foundation for predictive governance approaches.

Cognitive Load, Transformational AI, and Predictive Governance

Cognitive Load Theory explains why traditional grant writing practices often fail in complex administrative environments. Sweller (2011) demonstrates that excessive extraneous cognitive load impairs human problem-solving and decision-making. In sports funding contexts, managers must navigate dense regulatory frameworks alongside their core professional responsibilities. Digital technologies offer a pathway to alleviating this burden. Thompson et al. (2024) argue that technology-mediated support systems are essential for sustaining organisational performance in non-profit sports settings. By externalising structural and compliance-related tasks, organisations can reclaim what Shirky (2010) terms “cognitive surplus,” enabling greater focus on strategic and social innovation.

The emergence of Transformational Artificial Intelligence (TRAI) further strengthens this shift. Todosijević and Razbornik (2024a) define TRAI as a paradigm in which AI automates logical structuring and evaluative reasoning rather than simple text generation. From an equity perspective, Stegmann and Lang (2025) note that uneven digital transformation reinforces disparities between elite and grassroots organisations; AI-supported governance tools can narrow this divide by providing standardised, evaluator-grade support and strengthening the integrity of public sports funding. Predictive governance models are further supported by systematic evidence

Todosijević, S., Razbornik, I., Bednarek-Kamińska, M. (2025) From funding risk to predictive control: wincode AI system for preventing financial mismanagement in sports In: Dašić, D. (ed) Sporticopedia SMB2025, Vol 3, No 1, 203-210

showing that artificial intelligence enables early risk detection, evaluator-aligned simulation, and continuous decision support across the project lifecycle (Adaman-tiadou & Tsironis, 2025).

Methodology

The methodology is designed to evaluate the effectiveness of predictive structured control as an alternative to traditional, narrative-based grant writing, with a particular focus on financial integrity, implementation reliability, and organisational capacity building.

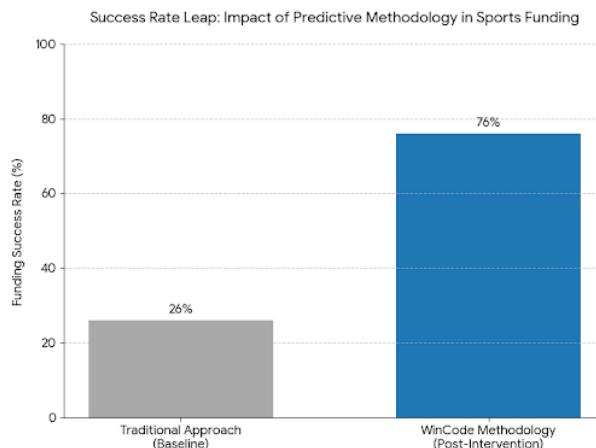
Research Design and Scope

The research combines qualitative and quantitative elements. A qualitative review of theoretical and policy-oriented literature establishes the conceptual framework for predictive governance and hybrid intelligence. This is complemented by quantitative and descriptive data collected from pilot training programmes conducted between 2023 and 2025 in Slovenia and Serbia. The sample includes over 100 sports professionals, including coaches, academy directors, project coordinators, and researchers, who participated in structured training based on the WinCode

WinCode System Architecture

The WinCode predictive system operationalises the 26-step protocol through four interdependent AI-supported modules. MILES provides structured AI mentorship for project modelling, policy alignment, and logical consistency. SCORE simulates official evaluation criteria to identify weaknesses and optimise quality prior to submission. EXECUTE converts approved work plans into time-bound task files, supporting real-time monitoring and proactive risk management. ECHO automates audit-ready reporting and impact visualisation, ensuring continuous compliance and transparent financial governance.

Methodological Paradigm Shift: Cognitive Surplus in Practice


The methodological shift introduced by predictive structured control represents a redistribution of professional effort rather than a simple technological substitution. By prioritising structured thinking, logic validation, and financial alignment, the WinCode methodology reduces extraneous cognitive load and enables sports professionals to focus on strategic and social objectives. This reallocation of effort provides the analytical foundation for the results presented in the following section. This study adopts a hybrid methodological approach integrating conceptual analysis with empirical evidence.

Results with Discussion

The application of the WinCode predictive methodology was evaluated through a case study involving pilot programmes conducted with sports organisations in Slovenia. Participants included coaches, academy directors, project coordinators, and researchers who applied the 26-step protocol to real Erasmus+ Sport and national funding calls. The results support the concept of hybrid intelligence, in which AI systems handle complex structural and compliance-related tasks while human professionals retain strategic judgement and ethical oversight. This partnership enables sports organisations to focus on social innovation and programme quality, rather than administrative survival.

The application of the WinCode predictive methodology demonstrated a substantial increase in funding success rates. Prior to the adoption of the predictive structured control model, participating organisations reported a baseline funding success rate of approximately 26%, which is consistent with average outcomes in highly competitive European calls. Following the implementation of the WinCode system, the success rate of submitted proposals increased to 76%. This improvement suggests that systematic logic modelling and evaluator-aligned simulation significantly reduce the risk of rejection caused by structural inconsistencies and unclear impact pathways. Proposals subjected to two to three iterative cycles of the SCORE module demonstrated measurable quality gains. Evaluator feedback highlighted improved coherence between objectives, activities, and budgets, as well as clearer articulation of expected outcomes. On average, these proposals achieved an estimated increase of 8–10 evaluation points, corresponding to an overall quality improvement of approximately 10–12%.

Figure 1. Leap in Project Funding Success Rate Following the Introduction of Predictive Structured Control

Source: Authors' own research and analysis.

The figure illustrates the comparative funding success rates of sports project proposals before and after the implementation of the WinCode predictive governance methodology. The baseline success rate reflects outcomes achieved through traditional grant writing approaches, while the post-implementation rate represents proposals developed using predictive logic modelling and evaluator-aligned verification. The observed increase demonstrates the effectiveness of structured, AI-supported project design in improving proposal quality and funding outcomes.

Conclusion

This study demonstrates that the transition from static grant writing to predictive structured control represents a substantive improvement in the governance and implementation of publicly funded sports projects. The empirical evidence from the Slovenian pilot programmes indicates that the WinCode system effectively reduces financial mismanagement risks by embedding logical coherence, evaluator-aligned verification, and financial traceability directly into the project lifecycle.

By operationalising a 26-step protocol grounded in the Logical Framework Matrix and supported by AI-driven modules, the methodology addresses key weaknesses that traditionally undermine sports projects, including fragmented planning, delayed risk detection, and cognitive overload among project managers. The observed increase in funding success rates, combined with significant efficiency gains and administrative cost reductions, confirms that predictive governance is not merely a technological enhancement but a strategic necessity in an increasingly complex funding environment. Importantly, this approach contributes to the democratisation of access to public funding by providing smaller and less resourced organisations with tools comparable to those available to elite institutions.

In conclusion, the WinCode predictive governance model offers a scalable and transferable framework for strengthening transparency, sustainability, and impact in sports funding. Its application has implications not only for financial management but also for the long-term capacity building of sports organisations operating within European public funding schemes.

References

1. Guidotti, F., Demarie, S., Ciaccioni, S., Capranica, L. (2023): Knowledge, competencies, and skills for a sustainable sport management growth: A systematic review, *Sustainability*, vol. 15, no. 9, 7061, <https://doi.org/10.3390/su15097061>.
2. Dowling, M., Leopkey, B., Smith, L. (2018): Governance in sport: A scoping review, *Journal of Sport Management*, vol. 32, no. 5, pp. 438–451, <https://doi.org/10.1123/jsm.2018-0032>.
3. Adamantiadou, D. S., Tsironis, L. (2025): Leveraging artificial intelligence in project management: A systematic review of applications, challenges, and future directions, *Computers*, vol. 14, no. 2, 66, <https://doi.org/10.3390/computers14020066>.
4. Hills, S., Walker, M., Dixon, M. (2019): Theory of Change and programme effectiveness in sport-for-development initiatives, *Sport Management Review*, vol. 22, no. 4, pp. 525–539.
5. Pollack, J., Helm, J., Adler, D. (2018): What is the iron triangle, and how has it changed?, *International Journal of Project Management*, vol. 36, no. 2, pp. 527–547.
6. Shirky, C. (2010): *Cognitive Surplus: Creativity and Generosity in a Connected Age*, Penguin Press, New York.
7. Stegmann, P., Lang, G. (2025): Digital transformation in voluntary sports organizations: A scoping review on multi-level drivers, promoting factors, forms and consequences, *Current Issues in Sport Science*, vol. 10, no. 2, article ciss053, <https://doi.org/10.36950/2025.2ciss053>.
8. da Costa, R. L., Dias, Á. L., Gonçalves, R. A. H., Pereira, L. F. (2022): Artificial intelligence in project management: Systematic literature review, *International Journal of Technology Intelligence and Planning*, vol. 13, no. 2, pp. 1–20, <https://doi.org/10.1504/IJTIP.2022.10050400>.
9. Sweller, J. (2011): Cognitive Load Theory, *Psychology of Learning and Motivation*, vol. 55, pp. 37–76.
10. Thompson, A., Naraine, M., Parent, M. (2024): Exploring the nexus of digital technology and organizational change in non-profit sport organizations, *Sport Management Review*, vol. 27, no. 4, pp. 1–21, <https://doi.org/10.1080/14413523.2024.2346633>.
11. Todosijević, S., Razbornik, I. (2024): Transformational AI (TRAI): Revolutionizing the modern business world, *EMC Review – Časopis za ekonomiju (Apeiron)*, vol. 27, no. 1, pp. 265–279, <https://doi.org/10.7251/EMC2401265R>.
12. Todosijević, S., Razbornik, I. (2024b): AI as a grant writing assistant: A game changer for EU sport funding, in: *Sporticopedia SMB – Book of Proceedings*, Faculty of Sport and Physical Education, Belgrade, pp. 211–223.